Solid-state batteries line up for better performance

Postdoctoral Researcher Ben Zahirisabzevar, left, and Professor Paul Braun.

Solid-state batteries pack a lot of energy into a small space, but their electrodes are not good at keeping in touch with their electrolytes. Liquid electrolytes reach every nook and cranny of an electrode to spark energy, but liquids take up space without storing energy and fail over time. Researchers are now putting solid electrolytes in touch with electrodes made of strategically arranged materials – at the atomic level – and the results are helping drive better solid-state battery technologies.

A new study, led by University of Illinois Urbana-Champaign materials science and engineering professor Paul Braun, postdoctoral research associate Beniamin Zahiri, and Xerion Advanced Battery Corp. director of research and development John Cook, demonstrates how control over the atomic alignment of solid materials can improve the cathode-solid electrolyte interface and stability in solid-state batteries. The results are published in the journal Nature Materials.

Read the full story:

Read the full paper: Revealing the role of the cathode–electrolyte interface on solid-state batteries

Also featured:

MRS Bulletin,Instilling order in electrode surfaces of solid-state batteries improves cell performance” by Boris Dyatkin, September 14, 2021.

Ceramic Tech Today, “Lining up for better performance: Researchers tailor interfaces in solid-state batteries” by Lisa McDonald, June 4, 2021.

New 3D microbatteries stand up to industry standard thin-film counterparts

The thin-film lithium-ion batteries used in microdevices such as portable and medical electronics may supply a good amount of power relative to their mass, but do not provide enough power for many devices due to their limited size. Researchers have introduced a fabrication process that builds microbatteries with thick, 3D electrodes using lithography and electrodeposition – and seals each unit in a gel electrolyte-filled package. The new prototype shows the highest peak power density of any reported microbatteries, the researchers said.

The new study, led by University of Illinois Urbana-Champaign postdoctoral researcher Pengcheng Sun and materials science and engineering professor Paul Braun, is published in the journal Advanced Materials.

Read the full story:

Read the full paper:  “High-performance packaged 3D lithium-ion microbatteries fabricated using imprint lithography

Researchers confront optics and data-transfer challenges with 3D-printed lens

Researchers have developed new 3D-printed microlenses with adjustable refractive indices – a property that gives them highly specialized light-focusing abilities. This advancement is poised to improve imaging, computing and communications by significantly increasing the data-routing capability of computer chips and other optical systems, the researchers said.

The study led by University of Illinois Urbana-Champaign researchers Paul Braun and Lynford Goddard and is the first to demonstrate the ability to adjust the direction in which light bends and travels through a lens with sub-micrometer precision.

Read the full story: Researchers confront optics and data-transfer challenges with 3D-printed lens

The results of the study are published in the journal Light: Science and Application: DOI: 10.1038/s41377-020-00431-3

Also featured:

Nanoscribe, “Direct laser writing of three-dimensional gradient-index optics” June 10, 2021.

MRS Bulletin, 3D printing technique forms microlenses with adjustable refractive indices” by Alejandro Burgos-Suazo, April 13, 2021.

Inside Science, Scientists Increase data Speed with Tiny 3D-Printed Lens” by Tess Joosse, January 6, 2021.

Chemical & Engineering News,A new way to make nanoscale lenses” by Ariana Remmel, December 17, 2020.

Photonics Media, 3D-Printed Lens Design Improves Data Transfer Possibilities” by Jake Saltzman, December 15, 2020.

Physics Today, “Silicon scaffolds support complex microlenses” by Christine Middleton, December 14, 2020., “Researchers develop 3D-printed microlenses with adjustable refractive indices” December 7, 2020.

Congratulations to Prof. Paul Braun and Prof. Nancy Sottos!

Paul Braun and Nancy Sottos elected AAAS Fellows

AAAS Fellows are a distinguished cadre of scientists, engineers and innovators who have been recognized for their achievements across disciplines, from research, teaching, and technology, to administration in academia, industry and government, to excellence in communicating and interpreting science to the public.

Braun as the Guest Editor for the October 2020 MRS Bulletin on Functional Materials and Devices by Self-Assembly.

Dmitri V. Talapin, Michael Engel, Paul V. Braun MRS Bulletin, Volume 45 / Issue 10, October 2020, pp 799 – 806 doi: 10.1557/mrs.2020.252 Published Online on 9 October 2020

Congratulations to Elizabeth Murphy, recipient of the 2020 National Science Foundation (NSF) Graduate Research Fellowship (GRF)!  Murphy is a UIUC chemistry student and MRL research assistant with Paul Braun’s group.

“My research interest is developing structure-property relationships in functional polymeric materials,” -Murphy.

Ashish Kulkarni is the recipient of the 2020 Ross J. Martin Award for outstanding research achievement by a graduate student, and recognizes the quality and magnitude of Kulkarni’s research achievements.

Congratulations, Ashish, on this incredible achievement!

Materials Research Laboratory News

Braun led a team that developed a new templating system to help control the quality and unique properties of a special class of inorganic composite materials, including first author, Ashish Kulkarni.

A.A. Kulkarni, E. Hanson, R. Zhang, K. Thornton, and P.V. Braun, Archimedean lattices emerge in template-directed eutectic solidification, Nature, 577, 355-358 (2020). DOI: 10.1038/s41586-019-1893-9

Nature, Illinois News Bureau, Advanced Science News, The American Ceramic SocietyMaterials Today, MRS Bulletin, Behind the Paper

APS Highlight: Ultraviolet Light Makes a Polymer Run Hot or Cold

Controlling Thermal Conductivity of Polymers with Light

J. Shin, J. Sung, M. Kang, X. Sie, B. Lee, M.M. Lee, T.J. White, C. Leal, N.R. Sottos, P.V. Braun and D.G Cahill, Light-triggered thermal conductivity switching in azobenzene polymers, PNAS (2019). DOI: 10.1073/pnas.1817082116

Illinois News, EurekAlert!, APS Highlight

Braun research featured in Materials Research Society INTERSECTIONS Issue!

A Value-Added Materials Research Story—Self-healing Research Harnessed for Diverse Applications

K.A. Miller, E.G. Morado, S.R. Samanta, B.A. Walker, A.Z. Nelson, S. Sen, D.T. Tran, D.J. Whitaker, R.H. Ewoldt, P.V. Braun and S.C. Zimmerman, Acid-Triggered, Acid-Generating, and Self-Amplifying Degradable Polymers, Journal of the American Chemical Society (2019). DOI: 10.1021/jacs.8b07705


M. Ali, T.-H. Tsai and P.V. Braun, Amplified Detection of Chemical Warfare Agents using 2D Chemical Potential Gradients, ACS Omega, 3, 14665-14670 (2018). DOI: 10.1021/acsomega.8b01519

Illinois News Bureau, EurekAlert!

Congratulations to Jungwoo Shin, winner of the Racheff-Intel award (2018)! The award consists of a plaque and up to $1,000 financial support to attend a conference at which the student will present the relevant research.

Jungwoo also received the Dow Chemical Best Presentation Gold Award in Soft Materials (2018) for the combined research presentation with liquid crystal polymer and the azopolymer works.

Story from Kali Serrano: Developing safety leaders at Illinois

Braun group research from January 2008 is featured on the celebratory cover for the tenth anniversary of the launch of Nature Photonics.
January 2017 Cover

H. Zhang, H. Ning, J. Busbee, Z. Shen, C. Kiggins, Y. Huang, J. Eaves, J. Davis, T. Shi, Y.-T. Shao, J.-M. Zuo, X. Hong, Y. Chen, S. Wang, P. Wang, P. Sun, S. Xu, J. Liu, and P.V. Braun, Electroplating Lithium Transition Metal OxidesScience Advances, 3, e1602427 (2017). DOI: 10.1126/sciadv.1602427

Illinois News BureauCeramics.orgEurekAlert!C&E News

N.A. Krueger, A.L. Holsteen, S.-K. Kang, C. Ocier, W. Zhou, G. Mensing, J.A. Rogers, M.L. Brongersma and P.V. Braun, Porous silicon gradient refractive index micro-opticsNano Letters, 2016. DOI: 10.1021/acs.nanolett.6b02939

Illinois News BureauAAASU.S. DOE Office of SciencePhotonics MediaSPIE Newsroom

M. T. Barako, A. Sood, C. Zhang, J. Wang, T. Kodama, M. Asheghi, X. Zheng, P.V. Braun, K. Goodson, Quasi-ballistic Electronic Thermal Conduction in Metal Inverse OpalsNano Letters, 2016. DOI: 10.1021/acs.nanolett.6b00468

10 years in images
Nature Nanotechnology
Check it out!

Nat. Nanotech. 6, 277–281 (2011)
Bicontinuous electrodes
Nickel inverse opal forms one of the two phases of a battery cathode. Together with an electrochemically active phase, this electrode architecture allows for a rapid ion and electron exchange and transport for fast recharging batteries.

S.-K. Kang, R.KJ. Murphy, S.-W. Hwang, S.M. Lee, D.V. Harburg, N.A. Krueger, J. Shin, P. gamble, H. Cheng, S. Yu, Z. Liu, J.G. McCall, M. Stephens, H. Ying, J. Kim, G. Park, R.C. Webb, C.H. Lee, S. Chung, D.S. Wie, A.D. Gujar, B. Vemulapalli, A.H. Kim, K-M. Lee, J. Cheng, Y. Huang, P.V. Braun, W.Z. Ray and J.A. Rogers, Bioresorbable Silicon Sensors for the Brain with Implantable Wireless OperationNature, 530, 71-76 (2016). DOI:10.1038/nature16492

Many news agencies highlight our work on bioresorbable silicon electronic interfaces to the brain, published in Nature; CNN, IEEE Spectrum, Discover, New Scientist, United Press International, Chemical and Engineering News, German Public Radio, and many others, January, 2016.

Illinois News BureauCNNScience DailyC&EN

News-Gazette article featuring Paul Braun – Wired In

Congratulations to former Braun group member Jinyun Liu!  His image was selected as a Finalist of the 2016 SCS Science Image Challenge at the University of Illinois!


 J. Liu, J. Wang, J. Kim, H. Ning, Z. Pan, S. Kelly, E. Epstein, X.-J. Huang, J. Liu and P.V. Braun, High Full-Electrode Basis Capacity Template-Free Three-Dimensional Nanocomposite Secondary Battery AnodesSmall, 11, 6265-6271 (2015). DOI: 10.1002/smll.201502538

H. Ning, J.H. Pikul, R. Zhang, X. Li, S. Xu, J. Wang, J.A. Rogers, W.P. King and P.V. Braun, Holographic Patterning of High-Performance on Chip 3-D Lithium Ion BatteriesPNAS (2015). DOI: 10.1073/pnas.1423889112

Illinois News BureauThe EngineerC&EN plus “News of the Week”Kurzweilai.netarstechnica ECS BlogSlash GearEngineering.com3DPrint.com3Ders.orgExtremeTechNewsKillerDesign Products & ApplicationsThe Register

Congratulations to Braun group undergraduates Nathan Reed and Paige DeGarmo, poster award winners at the East Central Illinois Local ACS Section Undergraduate Research Conference!  Nate won the “ECI Local Section Outstanding Poster Award” and Paige won the “Women Chemists Committee Outstanding Poster and Presentation Award.”

J. Kim, L.K. Aagesen, J.H. Choi, J. Choi, H.S. Kim, J. Liu, C.-R. Cho, J.G. Kang, A. Ramazani, K. Thornton and P.V. Braun, Template-Directed Directionally Solidified Three-Dimensionally Mesostructured AgCl-KCl Eutectic Photonic CrystalsAdvanced Materials, 27, 4551-4559 (2015). DOI: 10.1002/adma.201502265

Template‐Directed Directionally Solidified 3D Mesostruct

C. Zhang, A. Sitt, H.-J. Koo, K. Waynant, H. Hess, B. Pate and P.V. Braun, Autonomic Molecular Transport by Polymers Containing Programmed Chemical Potential GradientsJACS, 137, 5066-5073 (2015). DOI: 10.1021/jacs.5b00240

JACS Spotlight

C. Zhang, G.G. Cano, P.V. Braun, Linear and Fast Hydrogel Glucose Sensor Materials Enabled by Volume Resetting AgentsAdvanced Materials, 26, 5678-5683 (2014). DOI: 10.1002/adma.201401710. 

(e) Science NewsScience DailyIllinois News BureauHeadlines & Global NewsGizmagNews-Medical.netBioOptics

J. Cho, M.D. Losego, H.G. Zhang, H. Kim, J. Zuo, I. Petrov, D.G. Cahill and P.V. Braun, Electrochemically Tunable Thermal Conductivity of Lithium Cobalt OxideNature Communications, 5, 4035 (2014). DOI: 10.1038/ncomms5035


K.A. Arpin, M.D. Losego, A.N. Cloud, H. Ning, J. Mallek, N.P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G.N. Parsons, G.S. Girolami, J.R. Abelson, S. Fan and P.V. Braun, Three-Dimensional Self-Assembled Photonic Crystals with High Temperature Stability for Thermal Emission Modification, Nature Communications, 4 (2013). DOI: 10.1038/ncomms3630

MotorTrendStandford UniversityScience CodexThe American Ceramic SocietyMaterials 360

J.H. Pikul, H.G. Zhang, J. Cho, P.V. Braun and W. King: High Power Lithium Ion Micro Batteries from Interdigitated Three-Dimensional Bicontinuous Nanoporous Electrodes, Nature Communications, 4, 1732 (2013). DOI: 10.1038/ncomms2747 


S. Odom, S. Chayanupatkul, B.J. Blaiszik, O. Zhao, A.C. Jackson, P.V. Braun, N.R. Sottos, S.R. White and J.S. Moore, A Self-Healing Conductive InkAdvanced Materials, 24, 2578-2581 (2012). DOI: 10.1002/adma.201200196 

M. Losego, M.E. Grady, N.R. Sottos, D.G. Cahill and P.V. Braun: Effects of Chemical Bonding on Heat Transport Across InterfacesNature Materials, 11, 502-506 (2012). DOI: 10.1038/NMAT3303

Ceramic Tech TodayScienceDailyIllinois News BureauNPR Audio Clip

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P.V. Braun and H. Giessen: Hole-Mask Colloidal Nanolithography for Large-Area Low-Cost Metamaterials and Antenna-Enhanced SEIRA SubstratesACS Nano, 6, 979-985 (2012). DOI: 10.1021/nn2047982

J. Zhao, C. Zhang, P.V. Braun and H. Giessen, Large-area low-cost Plasmonic nanostructures in the near infrared region for Fano resonant sensing, Advanced Optical Materials, 24, OP247-OP252 (2012). DOI: 10.1002/adma.201202109

Materials Views

Congratulations to Katilin Tyler, recipient of a Mavis Future Faculty Fellowship!

Congratulations to Chunjie Zhang, winner of the Materials Research Society Graduate Student Gold Award for his paper “Hydrogel Sensor Materials for Continuous Glucose Monitoring,” which was presented at the MRS Fall Meeting in Boston, MA.

Press related to Chunjie Zhang’s award (see page 4):

Congratulations to James Pikul, winner of the Materials Research Society Graduate Student Gold Award for his paper “High Power Primary Lithium Ion Micro Batteries,” which was presented at the MRS Fall Meeting in Boston, MA.

July 2011, Cover of Nature Materials, Vol. 10
E.C. Nelson, N. Dias, K. Bassett, S. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. Rogers, J. Coleman, X. Li and P.V. Braun: Epitaxial growth of three-dimensionally architectured optoelectronic devicesNature Materials (2011).

Materials Today, Technology Review by MITScience DailyPhotonics.comR&D Mag

Podcast with Materials Today – “Optoelectronic photonic devices”

 A. Radke, T. Gissibl, T. Klotzbucher, P. V. Braun and H. Giessen: Three-Dimensional Bi-Chiral Plasmonic Crystals Fabricated by Direct Laser Writing and Electroless Silver PlatingAdvanced Materials, 23, 3018-3021 (2011). DOI: 10.1002/adma.201100543.

H. Zhang, X. Yu and P.V. Braun: Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodesNature Nanotechnology, 6, 277-281 (2011). DOI: 10.1038/nnano.2011.38 (supplementary information)

ScienceWGN TVScience DailyGreen Car CongressCHEMPHYSCHEMSpiegel OnlineHybrid.CZIllinois News BureauThe EconomistNews-Gazette

Paul Braun is interviewed by the BBC – click to listen!

Paul Braun is interviewed by German Radio 

WCIA Channel 3 News Report

Podcast with Materials Today – click to listen!

The research on Mechanochemically Active Polymers
(Mechanophores) by Nancy Sottos, Paul Braun, Jeff
Moore and Scott White was featured in the Popular
Science list of “10 Tech Concepts You Need to Know for 2011”

Popular Mechanics

April 2010, Paul Braun selected for Humboldt Foundation Award

K.A. Arpin, A. Mihi, H.T. Johnson, A.J. Baca, J.A. Rogers, J.A. Lewis and P.V. Braun: Multidimensional Architectures for Functional Optical DevicesAdvanced Materials, 22, 1084-1101 (2010). DOI: 10.1002/adma.200904096

Parachute cords, climbing ropes, and smart coatings for bridges that change color when overstressed are several possible uses for force-sensitive polymers being developed by researchers at the University of Illinois.

U of I News Bureau
Mechanochemically Active Polymers Web Page

February 2009, Frontispiece of Advanced Materials, Vol. 21 No.6
Dramatic reduction in corrosion of a steel plate coated with a self-healing coating (right) as compared to a conventional coating is demonstrated. Two samples were scratched and placed in 5% NaCl for 5 days. The background is an optical image (2× magnification), in the foreground is an SEM image of the scratch. In the self-healing sample, the scratch has almost completely self-healed, while in the control sample, the scratch remains all the way down to the substrate.

Self-healing Polymer Coatings
New polymer coatings prevent corrosion, even when scratched (see press release)

January 2009, Cover of Advanced Materials, Vol. 21 No.1
Here we report the use of direct laser writing topattern porous 3D structures from photo-responsive colloidal building blocks. Upon 2-photon exposure, the colloids become highly attractive, enabling localized control of aggregation behavior. 3D structures composed of porous walls are harvested by writing intoa colloidal sediment of these particles, followed by rinsing away unexposed colloidal species. Applications may include microfluidics, and studies of porous media, cellular growth and signaling, and colloidal physics. Cover art by Steven Eisenmann of the Beckman Institute VMIL.

Direct Laser Writing of Photoresponsive Colloids for
Microscale Patterning of 3D Porous Structures 

January 2008, Cover of Nature Photonics, Vol.2 No.1
Photonic crystals, artificially engineered nanoscale structures that can manipulate the flow of light, show great promise for building sophisticated optical circuitry that can route, filter, store or suppress optical signals. However, fabricating such circuitry presents a great challenge as defects need to be carefully incorporated into the photonic-crystal structure with great precision. Although this has been accomplished for two-dimensional designs that confine light in a plane, it is still an ongoing challenge for so-called complete-bandgap materials, where the defects need to be embedded into a three-dimensional structure. In this issue, Paul Braun and colleagues report the introduction of defects into a silicon three-dimensional photonic crystal by using a technique called two-photon polymerization. The result is waveguides that guide near-infrared light around sharp corners.
Article p52,News & Views p9UIUC Press Release

Jeong-Ho Park and Paul V. Braun: Coaxial Electrospinning of Self-Healing Coatings, Advanced Materials (2009).

Nature Research HighlightsNanowerk

Beckman Institute for Advanced Science and Technology – featuring an article with Paul V. Braun: SYNERGY Fall 2009

Mary M. Caruso, Stuart R. Schelkopf, Aaron C. Jackson, Alexandra M. Landry, Paul V. Braun and Jeffrey S. Moore: Microcapsules Containing Suspensions of Carbon Nanotubes, Journal of Materials Chemistry, 19, 6093 (2009).

Technology Review by MITMaterials WorldCPUChemical Science

Jhy-Tsung Lee, Matthew C. George, Jeffrey S. Moore and Paul V. Braun: Multiphoton Writing of Three-Dimensional Fluidic Channels within a Porous Matrix, Journal of the American Chemical Society (2009).

Chemistry World

Soo Hyoun Cho, Scott R. White and Paul V. Braun: Self-Healing Polymer Coatings, Advanced Materials, 21, 645-649 (2009).

tce todayMaterials TodayOne IndiaRed OrbitThe Post ChronicleThandian NewsTimes of the InternetC&ENUPI.comDiscovery ChannelMRS BulletinEurekaTechnology TodayInnovations ReportIllinois News Bureau

Stephanie A. Rinne, Florencio García-Santamaría and Paul V. Braun : Embedded cavities and waveguides in three-dimensional silicon photonic crystals, Nature Photonics, 2, 52-56 (2008).

optics.orgphysicsworld.comIllinois News BureauNanotechweb.orgTelepolisc’tLaser Focus WorldNewScientistABC News

Beckman Institute researchers, led by Paul Braun and Ben Grosser, receive $1.99 million National Science Foundation MRI award to acquire nano-CT instrument (see press release)

June 2007, Cover of Advanced Materials, Vol. 19, Issue 12
Germanium inverse woodpile 3D photonic crystals with a large (25%) photonic band gap in the infrared (background image) were fabricated through a multistep replication procedure. A polymer scaffold was first created by direct-write assembly, followed by the conformal growth of oxide and semiconductor layers, and removal of the polymer and oxide (foreground), …as reported on p. 1567 by F. García-Santamaría, M. Xu, V. Lousse, S. Fan, P. V. Braun,
and J. A. Lewis.

X. Yu, Y.-J. Lee, R. Furstenberg, J. O. White, and P. V. Braun: Filling Fraction Dependent Properties of Inverse Opal Metallic Photonic Crystals, Advanced Materials, 19, 1689-1692 (2007).

Advances in Advance 

F. García-Santamaría, M. Xu, V. Lousse, S. Fan, P. V. Braun and J. A. Lewis: Germanium Inverse Woodpile Structure with a large photonic band gap, Advanced Materials, 19, 1567-1570, 2007.

Advances in AdvanceIllinois News BureauInnovations ReportSemiconductornanotechwire.comPhysorg.comPSS

Researchers at the U. of I. have built an inverse woodpile structure of germanium, a material with a higher refractive index than silicon.

November 2006, Cover of Advanced Functional Materials, Vol. 16, Issue 17
The direct ink writing of three-dimensional functional materials is detailed in the Feature Article by Lewis on p. 2193. The left side of the cover image displays schematic images that show the conversion of a direct-write polymer woodpile to a silicon hollow-woodpile structure. The 3 × 3 image matrix showcases the resulting silicon photonic crystal (center) surrounded by a higher-magnification view of a representative hollow silicon feature (ca. 1 m in diameter). The figure was prepared by F. Garcia-Santamaria, G. M. Gratson, and P. V. Braun.

The ability to pattern materials in three dimensions is critical for several technological applications, including composites, microfluidics, photonics, and tissue engineering. Direct-write assembly allows one to design and rapidly fabricate materials in complex 3D shapes without the need for expensive tooling, dies, or lithographic masks. Here, recent advances in direct ink writing are reviewed with an emphasis on the push towards finer feature sizes. Opportunities and challenges associated with direct ink writing are also highlighted.

S. H. Cho, S. R. White, and P. V. Braun: Self-healing Polymer Coatings, abstract A3.54, Materials Research Society Fall Meeting, Boston, MA, December 2006. 

Science News

Z. Ge, Y. Kang, T. A. Taton, P. V. Braun, and D. G. Cahill: Thermal transport in Au-core polymer-shell nanoparticles, Nano Letters, 5, 531-535 (2005).

Nanotechnology News NetworkNanotechnology NowNanotechweb.orgNature

June 2004, Cover of Langmuir, Vol. 20, Issue 13
Cover illustration by Wonmok Lee and Paul V. Braun showing to the left a scanning electron microscope image of a substrate patterned with a periodic array of dimples formed through focused ion beam lithography and to the right a laser scanning confocal microscope cross section of a 3-D colloidal crystal formed by gravity-driven sedimentation from a binary mixture of 1.18 m diameter colloidal microspheres and 6 nm diameter highly charged nanoparticles onto this patterned substrate. After microsphere settling, the nanoparticle solution surrounding the colloidal crystal was gelled in situ by introducing ammonia vapor, which increased the pH and enabled drying with minimal microsphere rearrangement. The confocal image shown here was generated by infilling the dried colloidal crystal with an index-matched fluorescent dye solution prior to imaging. These colloidal crystals have very low defect densities and may be suitable for use as photonic crystals and as templates for photonic band gap materials. The dimple pitch and the volume fraction of microspheres in solution were found to strongly impact the quality of the resulting colloidal crystal. For more information see “Nanoparticle-Mediated Epitaxial Assembly of Colloidal Crystals on Patterned Substrates” by Wonmok Lee, Angel Chan, Michael A. Bevan, Jennifer A. Lewis, and Paul V. Braun on pages 5262-5270 of this issue. Copyright 2004 American Chemical Society

Langmuir Cover

H. Liang, T. E. Angelini, J.Ho, P. V. Braun and G. C. L. Wong: Molecular imprinting of biomineralized CdS nanostructures: Crystallographic control using self-assembled DNA-membrane templates, Journal of the American Chemical Society125, 11786-11787 (2003).

CNEChemical & Engineering News

W. Lee, S. A. Pruzinsky, and P. V. Braun: Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals, Advanced Materials14, 271-274 (2002).

Chemical & Engineering NewsScienceNatureMRS BulletinPhotonicsTechnology Reviewc’tEE TimesInformationweek.comIllinois News Bureau

“Tiny bubbles, sticky solutions,”The Toronto Star, February 16, 2004

View the complete Photonische Kristalle: Halbleiter für Licht story from c’t 26/2003